23 research outputs found

    Automatic Construction of Implicative Theories for Mathematical Domains

    Get PDF
    Implication is a logical connective corresponding to the rule of causality "if ... then ...". Implications allow one to organize knowledge of some field of application in an intuitive and convenient manner. This thesis explores possibilities of automatic construction of all valid implications (implicative theory) in a given field. As the main method for constructing implicative theories a robust active learning technique called Attribute Exploration was used. Attribute Exploration extracts knowledge from existing data and offers a possibility of refining this knowledge via providing counter-examples. In frames of the project implicative theories were constructed automatically for two mathematical domains: algebraic identities and parametrically expressible functions. This goal was achieved thanks both pragmatical approach of Attribute Exploration and discoveries in respective fields of application. The two diverse application fields favourably illustrate different possible usage patterns of Attribute Exploration for automatic construction of implicative theories

    Describing and Organizing Semantic Web and Machine Learning Systems in the SWeMLS-KG

    Full text link
    In line with the general trend in artificial intelligence research to create intelligent systems that combine learning and symbolic components, a new sub-area has emerged that focuses on combining machine learning (ML) components with techniques developed by the Semantic Web (SW) community - Semantic Web Machine Learning (SWeML for short). Due to its rapid growth and impact on several communities in the last two decades, there is a need to better understand the space of these SWeML Systems, their characteristics, and trends. Yet, surveys that adopt principled and unbiased approaches are missing. To fill this gap, we performed a systematic study and analyzed nearly 500 papers published in the last decade in this area, where we focused on evaluating architectural, and application-specific features. Our analysis identified a rapidly growing interest in SWeML Systems, with a high impact on several application domains and tasks. Catalysts for this rapid growth are the increased application of deep learning and knowledge graph technologies. By leveraging the in-depth understanding of this area acquired through this study, a further key contribution of this paper is a classification system for SWeML Systems which we publish as ontology.Comment: Preprint of a paper in the resource track of the 20th Extended Semantic Web Conference (ESWC'23

    Combining machine learning and semantic web: A systematic mapping study

    Full text link
    In line with the general trend in artificial intelligence research to create intelligent systems that combine learning and symbolic components, a new sub-area has emerged that focuses on combining Machine Learning components with techniques developed by the Semantic Web community - Semantic Web Machine Learning (SWeML). Due to its rapid growth and impact on several communities in thepast two decades, there is a need to better understand the space of these SWeML Systems, their characteristics, and trends. Yet, surveys that adopt principled and unbiased approaches are missing. To fill this gap, we performed a systematic study and analyzed nearly 500 papers published in the past decade in this area, where we focused on evaluating architectural and application-specific features. Our analysis identified a rapidly growing interest in SWeML Systems, with a high impact on several application domains and tasks. Catalysts for this rapid growth are the increased application of deep learning and knowledge graph technologies. By leveraging the in-depth understanding of this area acquired through this study, a further key contribution of this article is a classification system for SWeML Systems that we publish as ontology.</p

    Recent developments for the linguistic linked open data infrastructure

    Get PDF
    In this paper we describe the contributions made by the European H2020 project “Pret-a-LLOD” (‘Ready-to-use Multilingual Linked Language Data for Knowledge Services across Sectors’) to the further development of the Linguistic Linked Open Data (LLOD) infrastructure. Pret-a-LLOD aims to develop a new methodology for building data value chains applicable to a wide range of sectors and applications and based around language resources and language technologies that can be integrated by means of semantic technologies. We describe the methods implemented for increasing the number of language data sets in the LLOD. We also present the approach for ensuring interoperability and for porting LLOD data sets and services to other infrastructures, as well as the contribution of the projects to existing standards

    European language equality

    Get PDF
    This deep dive on data, knowledge graphs (KGs) and language resources (LRs) is the final of the four technology deep dives, as data as well as related models are the basis for technologies and solutions in the area of Language Technology (LT) for European digital language equality (DLE). This chapter focuses on the data and LRs required to achieve full DLE in Europe by 2030. The main components identified – data, KGs, LRs – are explained, and used to analyse the state-of-the-art as well as identify gaps. All of these components need to be tackled in the future, for the widest range of languages possible, from official EU languages to dialects to non- EU languages used in Europe. For all these languages, efficient data collection and sustainable data provision to be facilitated with fair conditions and costs. Specific technologies, methodologies and tools have been identified to enable the implementation of the vision of DLE by 2030. In addition, data-related business models and data-governance models are discussed, as they are considered a prerequisite for a working data economy that stimulates a vibrant LT landscape that can bring about European DLE.peer-reviewe

    Automatic Construction of Implicative Theories for Mathematical Domains

    Get PDF
    Implication is a logical connective corresponding to the rule of causality "if ... then ...". Implications allow one to organize knowledge of some field of application in an intuitive and convenient manner. This thesis explores possibilities of automatic construction of all valid implications (implicative theory) in a given field. As the main method for constructing implicative theories a robust active learning technique called Attribute Exploration was used. Attribute Exploration extracts knowledge from existing data and offers a possibility of refining this knowledge via providing counter-examples. In frames of the project implicative theories were constructed automatically for two mathematical domains: algebraic identities and parametrically expressible functions. This goal was achieved thanks both pragmatical approach of Attribute Exploration and discoveries in respective fields of application. The two diverse application fields favourably illustrate different possible usage patterns of Attribute Exploration for automatic construction of implicative theories

    Automatic Construction of Implicative Theories for Mathematical Domains

    No full text
    Implication is a logical connective corresponding to the rule of causality "if ... then ...". Implications allow one to organize knowledge of some field of application in an intuitive and convenient manner. This thesis explores possibilities of automatic construction of all valid implications (implicative theory) in a given field. As the main method for constructing implicative theories a robust active learning technique called Attribute Exploration was used. Attribute Exploration extracts knowledge from existing data and offers a possibility of refining this knowledge via providing counter-examples. In frames of the project implicative theories were constructed automatically for two mathematical domains: algebraic identities and parametrically expressible functions. This goal was achieved thanks both pragmatical approach of Attribute Exploration and discoveries in respective fields of application. The two diverse application fields favourably illustrate different possible usage patterns of Attribute Exploration for automatic construction of implicative theories
    corecore